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The purpose of this paper is to provide a general theoretical framework for the 
effect of multicomponent mixtures on biological systems when the components of 
these mixtures produce similar types of effects such as cardiac stimulation, sweet 
taste or a particular odor quality. These systems are assumed to involve receptor 
and, possibly, transducer entities with which the mixture components interact. In 
the general model, there are no constraints on the number of mixture com- 
ponents, receptors, transducers or binding activities in these systems. This 
means that substances may have receptors/transducers in common, they may 
have independent binding mechanisms or any combination of these two possi- 
bilities. Copyright 0 1996 Published by Elsevier Science Ltd 

INTRODUCTION 

Chemosensory stimulation is rarely the result of the 
action of a single substance. Even when single sub- 
stances are presented as odorants or tastants, they may 
undergo chemical or biological action leading to mix- 
tures (Price, 1984). The development of mixture models 
is, therefore, of primary importance in chemosensory 
research. Mixture models capable of linking peripheral 
events with perceptual effects in humans would allow 
non invasive techniques to be used to quantify mole- 
cular events at the periphery. It has been suggested that 
the transduction mechanisms associated with adrena- 
line, photons, sweet taste and smell are similar (Lancet 
et al., 1988). Black & Leff (1983) and Black (1989) dis- 
cuss a mathematical model for P-receptor agonists 
involving a G protein transducer. Mixture models could 
usefully include a transducer component if they are to 
be applied to taste and smell. 

The Law of Mass Action has played a central role in 
the development of equilibrium models capable of pre- 
dicting the effect of substances on biological systems. 
The word ‘effect’ is used very generally to mean a mea- 
surable output in response to a particular concentration 
of an agonist, an antagonist or a dualist. Although 
hormones and drugs have been the primary targets of 
these models, they have also been applied to and devel- 
oped for chemical sensing. Beidler’s pioneering models 
of taste and taste mixtures (Beidler, 1954, 1962) are 
related to earlier receptor models such as those of Hill 
(1909) and Gaddum (1936). In modeling taste effects, 
either nerve responses or percepts, it is usually necessary 

to assume a relationship, often assumed to be linear, 
between the effect and the concentration of the activated 
receptors. An example is the linear relationship between 
nerve response and occupied receptors. In the case of 
the intensity of a percept, such as sweetness, it is highly 
unlikely that this relationship is linear and is, at present, 
unknown. This suggests that parameters characterizing 
peripheral events, such as receptor and transducer 
binding constants, cannot be based reliably on percep- 
tual measurement. Is the inverse then also suggested? A 
knowledge of peripheral binding in humans will not 
lead to an assessment of how or how strongly a sub- 
stance tastes or smells. 

Since the relationship between activated receptors 
and percepts is so poorly defined, the task of linking 
perceptual measurement in humans to molecular events 
at the periphery seems hopeless. However, considerable 
relief from the linearity assumption mentioned earlier 
would be felt if this assumption was replaced with an 
assumption of monotonicity. It would then be necessary 
to assume only that a progressive increase in the con- 
centration of the receptor-agonist, or receptor-trans- 
ducer-agonist complex would lead to a progressive 
increase (or decrease) in the strength of the percept. It 
would not be necessary to know the form of this 
monotonic function, no matter how complex. In a paper 
on molecular models for binary mixtures, Ennis (1991) 
showed how receptor and transducer models could be 
developed based on receptor and transducer binding 
and assuming a monotonic connection between these 
events and the observed effects such as taste perception. 
Freedom from the linearity assumption was achieved 
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because the models were developed for the special 
situation of perceptual matching [reminiscent of the 
‘null’ method in pharmacokinetic modeling (Black & 
Leff, 1983)]. To use Ennis’ models, it is never necessary 
to know the functional relationship between a receptor- 
agonist complex concentration and the resulting per- 
ceptual strength. It is sufficient to know that the per- 
ceptual strength of a mixture has been matched to the 
equivalent strength of one of the components of the 
mixture. Ennis (1991) applied these models to published 
data on sweet tastant mixtures (De Graff & Frijters, 
1986) and demonstrated that the model fits supported 
the existence of a transducer. 

Taste and smell receptor systems may be capable of 
responding to more than one molecular species. Conse- 
quently, substances may have ‘preferred’ receptors while 
retaining the ability to bind to more than one type of 
receptor. Independence at the receptor level may occur, 
but competition for transducers may occur subsequent 
to the formation of agonist-receptor complexes. These 
different possibilities pose a significant challenge to the 
development of a comprehensive model that includes 
these as special cases. This general model is the focus of 
the present paper, and it will be shown that all six of the 
receptor and receptor-transducer models discussed by 
Ennis (1991) are special cases. The general model’s real 
value, however, will probably lie in the identification of 
special cases not quite as extreme as those given in 
Ennis (1991) and in providing a general framework for 
mixture modeling in the chemical senses and pharma- 
cology. 

CLASSIFICATION OF BINDING MECHANISMS 

In this paper, two broad categories of models are dis- 
tinguished. The first of these involves agonist binding to 
a receptor or receptors without the participation of a 
transducer. These models will be referred to as receptor 
models. In the second category of models a transducer, 
such as a G-protein, is assumed to be involved in signal 
generation. These models will be referred to as receptor- 
transducer models. In principle, an agonist may bind to 
more than one type of receptor and the resulting ago- 
nist-receptor complex may bind to more than one type 
of transducer. Given two or more agonists, it is easy to 
imagine that particular agonists may have preferred 
receptors (receptors to which they have greatest affi- 
nity), but may also compete with other agonists in 
binding to non preferred receptors. Common and inde- 
pendent binding to receptors and/or transducers repre- 
sent special cases of the general scheme just described. 
This occurs because binding constants can be assigned 
zero or non zero values consistent with the idea of 
common or independent receptors and/or transducers. 
Given any of these assumptions, binding to receptors 
and/or transducers may be simple or cooperative. 
Simple binding means that molecular interactions are 
one-to-one. Cooperative binding means that molecular 
interactions are not one-to-one. 

MIXTURE MODELS 

The general mixture model allows n agonists to bind to r 
receptors and involves t transducers. Special cases are 
the general receptor model and the general receptor- 
transducer model. Equations for these general models 
will be given. Further special cases within each of these 
categories are the common and independent binding 
models. In the common receptor and receptor-trans- 
ducer models, it is assumed that agonists compete for a 
common receptor. The resulting agonist-receptor com- 
plexes compete for a common transducer, if a trans- 
ducer is assumed to exist. In the specific independent 
receptor and receptor-transducer models discussed, all 
binding is assumed to be independent. It is possible that 
in the receptor-transducer models, there may be com- 
mon receptors and independent transducers or the 
reverse. These will not be singled out as special cases 
although they are clearly derivable from the general 
mixture model. Finally, all of the models may be con- 
sidered from the standpoint of simple or cooperative 
binding at the receptor and/or transducer levels. In the 
special cases considered, only cooperative binding at the 
receptor level will be discussed although other types of 
cooperative binding can be derived from the general 
receptor-transducer model. 

In an earlier paper Ennis (1991) made the assumption 
that an agonist’s effect was monotonically related to 
either an agonist-receptor complex (in receptor models) 
or to an agonist-receptor-transducer complex (in recep- 
tor-transducer models). Ennis assumed further that 
when two agonists produce the same type of effect (for 
example, both have the same type of percept, such as 
sweetness), then the same post receptor or post trans- 
ducer monotonic function applies to both substances. 
This means that if a transducer does not exist or if two 
agonists have the same eficacy, then equivalence of 
effects implies that the agonist-receptor complex con- 
centrations are equal. Similarly, if the two agonists 
require the involvement of one or more types of 
transducers (which means that their efficacies may 
not be equal), then equivalence of effects implies that 
the agonist-receptor-transducer complex concentrations 
are equal. This is a feature of a monotonic function. 

Iffis a monotonic function and ifflxt) = Ax*), then 

Xl = x2. If two substances produce the same type of 
effect, such as sweetness, and if f(x) is the percept of 
sweetness evaluated at some value of a variable x in the 
neural chain from the periphery to the brain, then the 
two substances matched perceptually are both presumed 
to involve an identical monotonic function of this vari- 
able. The variable may represent a peripheral event or a 
much later neural event. In this paper, it is assumed that 
this variable is the concentration of the agonist-receptor 
complex in receptor models and the concentration of the 
agonist-receptor-transducer complex in the receptor- 
transducer models. When, for instance, GTP replaces 
GDP on the (Y subunit of a G protein in response to the 
formation of an agonist-receptor complex, it is assumed 
that subsequent events do not further depend on the 
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nature of the agonist. In other words, the GTP-G pro- 
tein does not ‘remember’ how it was created. Of course, 
the events leading to this stage may be very different for 
different substances. A difference between two different 
substances in their pharmacological or perceptual 
effects is modeled in terms of the concentrations of 
agonist-receptor-transducer complex formed which is a 
function of the agonist’s affinity, efficacy and stoichio- 
metry in binding receptors and transducers. In this 
paper, these ideas will be generalized considerably 
beyond Ennis (1991) by applying them to multi- 
component mixtures and deriving the corresponding 
mixture equations. 

Definitions 

iA11 is a particular concentration of an agonist Al 

(called the ‘target’ concentration of A,), 

[A(m)] I 

[&I 

is the concentration of agonist Ai in a mixture, If cooperative binding occurs, then 

is the concentration of receptor Rj, 

[Tkl 

KiJ 

is the concentration of transducer Tk, 

is the association constant for the binding of 
agonist Ai to receptor Rj, 

[A&l is the concentration of the complex formed 
when Ai binds to Rj, 

[A.Rtm)] ’ J 

&ik 

is the concentration of the complex formed 
in a mixture when Ai binds to Rj, 

is the association constant for the binding of 
the agonist-receptor complex AiRj to trans- 
ducer Tk, 

[A&TkI is the concentration of the complex formed 
when complex AiRj binds to transducer Tk, 

[AiRi@)] is the concentration of the complex formed 
in a mixture when the complex AiRj binds to 
transducer Tk, 

aij is the stoichiometric coefficient for Ai bind- 
ing to Ri, 

aijk is the stoichiometric coefficient for AiRj 

binding to Tk, 

n is the number of agonists in a mixture, 

r is the number of different receptor types, 

t is the number of different transducer types. 

Note that the target compound has been labeled A,, 

but this does not affect the generality of what follows 
since any one of the Ai can be chosen as the target. 

The general mixture model 

When a mixture percept (or effect) equals a target per- 
cept, from the earlier comments this implies that 

c[AjRje’] -C[AlRjTk] =O 
rJ.k />k 

(1) 

where i= 1,2 ,..., n, j= 1,2 ,..., r, and k= 1,2 ,..., t. 
Gaddum’s classic equation (1937) for competitive 

agonism applied to A,Rj binding to Tk in the presence 
of AyRj (A, and A, are specific agonists with the general 
subscript i replaced by x and y) yields 

[AxRie)~ = 

1 + K_xjk [A_xRy)] + Kyjk [A,Rjm)] (2) 

In general when there are nr competitive agonist-recep- 
tor complexes, 

[AiRj$)] = 
Kqk [AiRj] “’ [ Tk] 

1 f F Kqk pie?‘] “’ 
(4) 

From the Law of Mass Action, when A, alone binds to 
Rj and Tk, 

[AlRjTk] = 
Kljk [A I Rj] *I” [T/c] 
1 + Kljk [Al Rj] ‘Iii 

(5) 

Substituting into equation 1, 

(6) 

_ 
c 

Kljk [A I Rj] ‘I” [ Tk] = o 

ik 1 $ Kljk [A 1 Rj] “’ 

Note that equation 6 requires that AiR,!m) and [AIRi] are 
known. These concentrations are given by 

I 

and 

[AIRj] = Kl~[Al]*” [Rj] 
1 + Klj[Al] *I/ 

(7) 

(8) 
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Substituting into equation 6, 

/ \ %k 

c 
ijk 

&j+&$!$+) ’ &I 

a)k 

1 +x&k q (9) 

It is assumed that the target concentration [Ai] is a 
known constant. Estimates of the parameters or other 
variables based on them can be obtained by fitting 
specific models to data, as shown for the special cases 
discussed by Ennis (1991). 

It is important to point out what equation 9 does and 
does not say. Equation 9 says that when a target con- 
centration ([Ai]) of a substance is matched in its effect to 
a mixture of substances, then this equivalence implies an 
earlier equivalence in the neural chain. It is assumed 
that this earlier equivalence occurs after the formation 
of ligand-receptor-transducer complexes. A, may bind 
many receptors and may interact further with many 
types of transducers. The extent of this binding is 
determined by the affinities, efficacies, and stoichio- 
metric coefficients for Ai in these various reactions. 
These parameters, combined with receptor density, 
determine the concentration of the variety of ligand 
complexes produced by Ai. The same statements may 
be made about other agonists in the mixture found 
equivalent to A, in effect. In mixtures, of course, differ- 
ent compounds may have to compete for common 
receptors and/or transducers and the resulting ligand 
complex concentrations reflect this. The equivalence 
assumed by equation 9 occurs after the formation of the 
manifold ligand-receptor-transducer complexes formed 
in mixtures and with Ai alone. Equation 9 does not say 
that the percept (or effect, generally) resulting from a 
mixture is the sum of the percepts resulting from the 
substances alone. Equation 9 does not imply additivity 
at the percept (response) level. It does not imply that 
dose-response functions for the components of mixtures 
must be equal. The components may involve cross- 
binding, differential affinity and efficacy and simple and/ 
or cooperative binding of any type. 

BINARY MIXTURE MODELS 

The binary mixture models discussed by Ennis (1991) 
were somewhat extreme. Two compounds either shared 
a common receptor-transducer system (i.e. competed 
with each other up to the formation of the receptor- 
transducer complex) or they acted on independent 
receptor-transducer systems. These models did not 
allow for the possibility that two substances may bind 

differently to two or more receptor-transducer systems 
and, although they may have ‘preferred’ receptors, they 
may bind to some extent to other systems. Equation 9 
allows for this possibility with respect to any number of 
agonist, receptor and transducer types. The generality 
of equation 9 may not be required if, for instance, a 
group of receptors interacts with a much more limited 
group of transducers. General models for binary mix- 
tures will now be given and it will now be shown that 
the six binary mixture models discussed by Ennis (1991) 
are special cases of equation 9. 

Receptor models 

Let r = n = 2, which means that there are two agonists 
and two receptor types. The percept is assumed to be 
monotonically related to the agonist-receptor con- 
centrations without the participation of a transducer. At 
equilibrium this implies that 

2A1 + 2A2 + 2Ri + 2R2 

* AlRl + A1R2 + A~RI + A2R2 

When a target concentration of Al has been matched 
perceptually to a mixture of Al and A2 this means that 

c[AiRy)] -C[AlRj] =O 
ij i 

(10) 

where i = 1,2, and j = 1,2. 
Substituting from equations 7 and 8, 

c 
Ku A?) “[Ri] 

[ 1 c KdAlla’J [Rjl = o ii ~+cK~[A~)]~“- j 1 +Klj[AIIa” cl 1~ 
i 

Equation 11 is a logical consequence of the assumptions 
being made, but can also be obtained from equation 9 
by assuming that r = n = 2, that t = 1, and that the 
common binding constant for all A,Rj is zero. These 
assumptions exclude the participation of a transducer, 
From equation 11 and assuming aii = 1 it can be shown 
that 

[[A~‘12]{K~i&2(2 + [4]Kii + [A$&)}+ 

WI{ K21 + K22 + K21 K,2(2[A!“)]+ 

[A,][AI”)]Kl2) + KllK22(2[A~)]+ 

[Al][A(lm)]Kd + [AI]KIIKIZ 
( 

K22([A(lm)]- (12) 

[Ad) + Kd[A(;n)l - [Ad))} + &@)I - [All)x 

(Kll + K12 + WlK,t[AI”)] + 2KllKl2[Al]+ 

[Al][A(lm)]K:$G2 + [A,][Af?Kl,K:,) = 0 

Equation 12, a special case of equation 9, is the general 
receptor model for binary mixtures assuming that r = n 
= 2. A more general model would not assume n = r, 
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such as when there are more receptor types than ago- 
nists. This type of model is a special case of equation 9, 
but will not be discussed further in this paper. The 
common and independent receptor models should be 
special cases of equation 12. It will now be shown that 
Ennis’ (199 1) receptor models, common and indepen- 
dent, simple and cooperative binding, are special cases 
of equation 9. 

Common receptors 
If there is a common receptor (R, and R2 are equiva- 
lent), then K,, = K,* and K2, = Kz2. 

Equation 12 now reduces to 

{KzlLd? - KII([AI] - [A~‘])}{(2KZ,+ 

2[A,]K,,Kz,)[Ap)] - (-2 - 2K,,([A,] + [A?)])- (13) 

%4,1[4’%:,)) = 0 

Equation 13 gives two roots for [A?)], only one of 
which is positive. Note that the expression in the second 
set of curly brackets gives a negative [A?)] when set to 
zero. Hence 

KU [&)I - &,([A,] - [A?)]) = 0, 

from which 

[A?)] = k([A,] - [At;“)]), (14) 

where k = 2 

If a, I and a2, are the stoichiometric coefficients for A 1 
and A2 binding to the common receptor (cooperative 
binding) 

Equation 15 is identical to Equation 13 in Ennis (199 1) 
for cooperative binding of two substances to a common 
receptor. Equation 14 is the corresponding simple 
binding model. Equations 14 and 15 are, therefore, two 
of the six models derived in that paper. 

Independent receptors 
If the receptors are independent, KI, = K,2 =O. Equa- 
tion 12 now reduces to 

[AI”)]G’[@)]Kllh + K22+ 

[Al][A~)]K:&22) + [A~& - [AIIKII = 0 

(16) 

from which, 

[A?)] = WI] - Ld”% 
1 + 2[A(;“)]K,, + [A,][Ap)]Kf, 

(17) 

where k = 2. 

Once again, under the assumption of cooperativity, 

L 

[A?)] = k([A,]“” - [Aj*)]‘l’) 92 

1 + 2[Ar”)la” K, , + [A I]aE1 [,@)]“” K2 
(18) 

II 

where all and a22 are the stoichiometric coefficients for 
A, and A2 binding to R, and RZ, respectively. 

Equation 17 is identical to Equation 21 in Ennis 
(1991) and Equation 18, a simple extension, was not 
given. It is important to see that the binary mixture 
models based on common and independent binding are 
special cases of Equation 12, which itself is a special 
case of Equation 9, and that simple and cooperative 
binding models are further special cases of these. 

Receptor-transducer models 

Let t = r = n = 2. At equilibrium, 

4A, +4A1+4R, +4R2+4T, +4T2++ 

AIRITI +AIRIT~+A,R~T, +A,RzT~+A~R,T,+ 

&RITZ +- AzRzT, i A2R2T2 

Assuming that a target concentration of A, has been 
matched perceptually to a mixture of A, and AZ, then 
from Equation 1 

CiAiRj$)] - C[A, RjTk] = 0 (19) 
ijk 

or, from equation 9 

ik 

- 

(20) 

where i = 1,2j = 1,2 and k = 1,2. 
Equation 20 is the general receptor-transducer model 

for binary mixtures. As with the receptor models, Ennis’ 
(199 1) common and independent receptor-transducer 
models are special cases of Equation 20. 

Common receptors/transducers 
Assume that there is a common receptor and a common 
transducer for both A, and AZ. This means that 

A, + A2 +2R, +~T,sA,R,TI + AzR,T,, 

since R, and R2 are identical, as are Tl and T2. Note 
also that K,, = K,*, Kz, = K22, K,,, = K,21 = K,,2 = 
K,22, and Kz,, = Kz2, = K2,2 = K212. Assume that 
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auk = au = 1. Under these assumptions, equation 20 
simplifies to 

kp1&h, + KllK2IK211[~1] - KIIK2lKlII[~II) 

= KlIKlll[~ll - K,IKIII[A~)]. 

(21) 

Dividing by K21 K21 I and letting 

KIIKIII (y=--- 
K21K211 

L42lCl + KIIMII - K214411) = 4[hl - [J(‘% (22) 

[A(m)] = 41All - lAjm)l) 
2 

1 + PII(KII - aK21) ’ 
(23) 

(24) 

where p = Kll - aK2,. 
Under the assumption of cooperativity at the receptor 

level, 

[&4] = 

[ 
4Lw _ [Ajm)]ul! k 

1 + P[Ap 1 (25) 
Equation 25 is identical to Equation 16 in Ennis (1991) 
for two agonists binding to common receptors and 
transducers. However, it can now be seen that Equation 
25 is a special case of Equation 9. 

Equations 14, 15, 17, 18,24 and 25 are binary mixture 
models assuming common and independent receptors 
and common receptors and transducers (with and with- 
out cooperative binding). These models are all special 
cases of Equation 9. It will now be shown that Ennis’ 
independent receptor-transducer model is also a special 
case of equation 9. 

Independent receptors/transducers 
In the case of independent receptors and transducers, at 
equilibrium 

AI + A2 + RI + R2 + TI + Tz=AIRITI + A2R2T2 

Note that 

K12 = Kzl = Ki12 = K211 = K121 = 

K211 = K212 = K122 = 0 

These constants have zero values because it is assumed 
that Al and A2 bind to exclusive receptor and transdu- 
cer systems. Assume that [TJ = [T2] and that [RI] = 

[R2] = [RI. Equation 20 then simplifies to 

[A?)] = 
4[A11 - [A!‘“)]) (26) 

9 

where8 = 1 +/~[AI] + [Ay)]{Kl~(l + 27) + c~K22) + [AI] 

[Ap)]{Kfl + (1 + T)~} 

where 

K,,K,,, 
Q = KaKm’ 

p = Kll - aK22, and 

7 = KIII[RI. 

The common receptor-transducer model, equation 
24, and the independent receptor-transducer model, 
equation 26, differ in the denominator. Equation 26 
contains an expression in the denominator, missing in 
equation 24, involving [Av)]. Equation 24 is a linear 
function of [A?)] leading to linear isoboles under the 
assumption of common receptors and transducers. This 
means that equation 24 can never explain synergistic or 
antagonistic effects. Of course, if cooperative binding is 
allowed, as shown in equation 25, nonlinear isoboles 
can be constructed under the common binding assump- 
tion. Equation 26, however, is nonlinear in [A?)] and an 
appeal to cooperative binding is not necessary to 
explain effects like synergism. Ennis (1991) did not pre- 
sent the independent receptor-transducer model in the 
form of equation 26. However, it is not difficult to show 
that equation 26 can be rewritten as 

[AT)] = ‘([& - lAi”‘l) 
b 

where 4 = h + [AI](&I~, - KII) + [Ay)]Kl&,(l 

+ [A~)]KII + (AI][A~$,(K,~ + K 

+ 27) 

a )2 

where k, = Kz2/Kll and 7 = K1 JR] as given in Ennis 
(1991). 

SCHILD REGRESSION AS A SPECIAL CASE OF 
EQUATION 24 

Equation 24 gives the relationship between A, and A2 
required in a mixture of the two substances to match Al 
at concentration [A,]. Suppose that A2 is an antagonist 
in the presence of Ai. Then the expression 

[A(m)] = (Y([AIl - iA?)]) 
2 

1 + PiAl] 
(27) 

describes the concentration of Ai needed in the mixture 
in the presence of Az at [A?)] to match Al at [Al]. 

Rearranging equation 28, 

[A?)] = [Al] - (A?)] (’ + fA”) (28) 

An antagonist is a substance with a positive affinity and 
zero efficacy [Black (1989)]. When K211 = 0, 

I+ P[Ad 
o 

= -K21 [AI]. (29) 
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Hence, 

= [All(l + &@~)I), (30) 

which is the equation for Schild regression 
[Arunlakshana & Schild (1959)]. 

A useful aspect of this derivation is to demonstrate 
the meaning of an antagonist in terms of affinity and 
efficacy. Affinity has been defined with respect to initial 
receptor binding and efficacy in terms of post receptor 
binding. By reducing the efficacy of A2 to zero, equation 
24 describes a mixture model of an antagonist and an 
agonist. Schild regression was not developed from this 
perspective and is not explicit about the participation of 
transducers (note that equation 30 has no terms for the 
involvement of Ai with a transducer). The purpose of 
this section is to show that these two models intersect 
when an antagonist has been appropriately defined in 
the present theory. 

Parameter estimation 

Ennis (1991) showed that the parameters of the six 
models that he derived could be estimated using non 
linear least squares. The same techniques can be used to 
fit equation 9 and its special cases to mixture data. 
Ennis (1991) fit mixture models to the glucose-fructose 
mixture data of De Graff & Frijters (1986). These model 
fits supported the existence of a transducer entity for 
sweet taste in humans. They also supported the finding 
that fructose is sweeter than glucose in humans because 
its affinity (receptor binding) is stronger than glucose, 
although its efficacy (transducer binding) is weaker. The 
synergistic effects observed when glucose and fructose 
are mixed are predicted by the receptor-transducer 
model with simple binding. 

CONCLUSION 

One can imagine an almost infinite number of complex 
binding events when multicomponent mixtures interact 
with biological systems, even when the mixture compo- 
nents have the same type of effect (for example, a specific 

type of cardiac stimulation, sweet taste, or a particular 
odor quality). It is satisfying, then, that a great number 
of these events can be defined in such a way that mix- 
ture effects can be represented by a single model, equa- 
tion 9 in this paper. Equations for simple or cooperative 
binding to common or independent receptors and 
transducers, and combinations of these, are all special 
cases of this model. The assumption that measured 
effects are only monotonically related to agonist 
concentrations makes it possible to determine peripheral 
binding parameters based on effects occurring at a 
considerable distance from the sites of action of 
these agents. The goal of predicting perceptual 
effects from biochemical parameters of odorants and 
tastants or estimating binding constants from psycho- 
physical experiments may not be as elusive as intimated 
in the introduction. Since direct methods for estimating 
chemosensory binding constants in living humans is 
neither ethical or feasible, the modeling approach 
discussed in this paper should be helpful in achieving 
this goal. 
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